\(\int \frac {1}{\log (c (d+e x^3)^p)} \, dx\) [145]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A]
   Fricas [N/A]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 14, antiderivative size = 14 \[ \int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\text {Int}\left (\frac {1}{\log \left (c \left (d+e x^3\right )^p\right )},x\right ) \]

[Out]

Unintegrable(1/ln(c*(e*x^3+d)^p),x)

Rubi [N/A]

Not integrable

Time = 0.00 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx \]

[In]

Int[Log[c*(d + e*x^3)^p]^(-1),x]

[Out]

Defer[Int][Log[c*(d + e*x^3)^p]^(-1), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 0.01 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.14 \[ \int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx \]

[In]

Integrate[Log[c*(d + e*x^3)^p]^(-1),x]

[Out]

Integrate[Log[c*(d + e*x^3)^p]^(-1), x]

Maple [N/A]

Not integrable

Time = 0.03 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.00

\[\int \frac {1}{\ln \left (c \left (e \,x^{3}+d \right )^{p}\right )}d x\]

[In]

int(1/ln(c*(e*x^3+d)^p),x)

[Out]

int(1/ln(c*(e*x^3+d)^p),x)

Fricas [N/A]

Not integrable

Time = 0.30 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.14 \[ \int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int { \frac {1}{\log \left ({\left (e x^{3} + d\right )}^{p} c\right )} \,d x } \]

[In]

integrate(1/log(c*(e*x^3+d)^p),x, algorithm="fricas")

[Out]

integral(1/log((e*x^3 + d)^p*c), x)

Sympy [N/A]

Not integrable

Time = 4.79 (sec) , antiderivative size = 14, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int \frac {1}{\log {\left (c \left (d + e x^{3}\right )^{p} \right )}}\, dx \]

[In]

integrate(1/ln(c*(e*x**3+d)**p),x)

[Out]

Integral(1/log(c*(d + e*x**3)**p), x)

Maxima [N/A]

Not integrable

Time = 0.25 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.14 \[ \int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int { \frac {1}{\log \left ({\left (e x^{3} + d\right )}^{p} c\right )} \,d x } \]

[In]

integrate(1/log(c*(e*x^3+d)^p),x, algorithm="maxima")

[Out]

integrate(1/log((e*x^3 + d)^p*c), x)

Giac [N/A]

Not integrable

Time = 0.30 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.14 \[ \int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int { \frac {1}{\log \left ({\left (e x^{3} + d\right )}^{p} c\right )} \,d x } \]

[In]

integrate(1/log(c*(e*x^3+d)^p),x, algorithm="giac")

[Out]

integrate(1/log((e*x^3 + d)^p*c), x)

Mupad [N/A]

Not integrable

Time = 1.17 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.14 \[ \int \frac {1}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int \frac {1}{\ln \left (c\,{\left (e\,x^3+d\right )}^p\right )} \,d x \]

[In]

int(1/log(c*(d + e*x^3)^p),x)

[Out]

int(1/log(c*(d + e*x^3)^p), x)